" Medical Electronics"related to papers

Abstract:Aiming at the problem of insufficient accuracy of traditional automatic sleep staging, a new method of automatic sleep staging based on a fusion algorithm, multi-scale entropy(MSE) and principal component analysis(PCA), is proposed. In this work, the data of sleep EEG monitoring and the expert staging of 8 subjects are utilized as samples. Firstly, MSE is used to extract the nonlinear dynamic features from sleep stages. Then this features are replaced by the first two principal component vectors of PCA. The purpose is reduce the data dimension redundancy, as well as retaining the vast majority of EEG non-linear features. After that the new vector are entered into the BPNN classifier to implement the MSE-PCA model of automatic sleep staging. The experimental results show that the accuracy of automatic staging can reach to 87.9% and kappa coefficient is 0.77, which can improve the accuracy and stability of automatic EEG sleep staging system.

Abstract:In this paper, the researchers aim to monitor electrocardiogram(ECG) signal of the high-risk occupational people such as police, fire fighters and so on. By using chest strap, a wearable wireless system of real-time ECG monitoring was designed. The real-time transmission and display of ECG and heart rate is implemented on the smart phone. Considering of the routine activities of the policemen and basing on the theory of adaptive filter, the reference signal is obtained by 3D accelerometer and waveforms after filtering motion artifact(MA) by using two kinds of adaptive algorithms are compared in this paper. The result shows that the baseline of ECG waveforms from adaptive filter using normalized least mean square(NLMS) is more stable and the accuracy of location of ECG’R wave can reach above 99% in most case. The error of heat rate is within 4% in daily routine of people. The measurement accuracy of the system is high.

Abstract:Aiming at the inconvenience of the measurement of human joint activity and the rehabilitation robot action teaching in clinical rehabilitation and the cumbersome training parameters, a kind of human posture detection system with low price and convenient data acquisition is designed. The system uses MPU6050 inertial measurement unit and I2C communication to achieve multi-channel sensor data acquisition and upload, and realizes the detection of human joint angle in LabVIEW environment based on the complementary filter algorithm. By comparing with a company's three-dimensional gait analysis and sports training system, it is confirmed that the system is accurate and reliable. This system is used for horizontal lower limb rehabilitation training robot teaching action acquisition to achieve the robot teaching function.

Abstract:Based on the studies of ECG devices and the low-power consumption technology, a wearable ECG device was designed based on ADS1293. The wearable ECG device includes a low-power consumption module of ADS1293 with high integration of the analog front-end chip, a low-power wireless module of Bluetooth for ECG acquisition, and a module of power management for flexible power management. When monitoring ECG signal by the wearable ECG device with a piece of intelligent clothes, the ECG data can be sent to a computer by Bluetooth and displayed in a Matlab GUI. We tested the device by experiments and verified that the wearable ECG device can collect ECG signals in different daily activities. It has the advantages of small volume, low power consumption, and high reliability and accuracy of signals. The wearable ECG device can be used for remote monitoring and early warning of heart diseases.

Abstract:This paper proposes the design of wearable headset system monitoring heart rate and blood oxygen, and completes the hardware and software design. The three main functional parts are as follows: the acquisition of signals, the calculation of the output data in pulse wave and the real-time heart rate and blood oxygen value; and the delivery of data from the Bluetooth module to the upper monitor. The testers achieve the real-time oversight through the results of the software of the upper monitor. In comparison with the designed system in the paper and the standard system, the errors are within the allowable range, which validates the accuracy of the design.